2 - 2 改修技術 (環境・省エネルギー性能) | 技術 | 分野 | 大分類:目的 | 中分 | 類:手段 | 小分類:技術の名称 | |------|--------------|---------------|---------------|--------------|---| | 改修技術 | 環境 省エネルギー 性能 | 断熱性の向上 | 躯体の断熱性能の向上 | 屋根の断熱性の向上 | 断熱露出防水工法
断熱保護防水工法 | | | | | | 外壁の断熱性の向上 | 外壁外断熱工法(ビンネット押え外断熱工法)
外壁外断熱工法(乾式密着外断熱工法)
外壁外断熱工法(乾式通気層外断熱工法)
外壁外断熱工法(湿式密着外断熱工法)
内断熱工法(置換工法)
内断熱工法(内張り断熱工法、かぶせ工法) | | | | | | 床の断熱性の向上 | 床断熱工法(スラブ下断熱)
伝断熱工法(スラブト断熱) | | | | 断熱性の向上 | 開口部の断熱性の向上 | サッシの断熱性の向上 | サッシ2重化工法(外付2重化工法)
サッシ2重化工法(内付2重化工法)
サッシ交換工法(内付2重化工法)
サッシ交換工法(かぶせ工法)
サッシ交換工法(カット工法) | | | | | | ガラスの断熱性の向上 | 刀フ人の父換
************************************ | | | | | | 玄関ドアの断熱性の向上 | 断照タードの設置
玄関ドアの交換(扉の交換)
玄関ドアの交換(かぶせ工法)
玄関ドアの交換(カッド工法)
室里上日射遮蔽浮床工法
屋上高日射反射率塗装の採用
屋上線化の採用 | | | | 日射遮蔽性の向上 | 躯体の日射遮蔽性の向上 | 屋根の日射遮蔽性の向上 | 屋上日射遮蔽浮床工法
屋上高日射反射率塗装の採用
屋上緑化の採用 | | | | | | 外壁の日射遮蔽性の向上 | 年 画ルーハーの設置
外壁通気工法
外壁高日射反射率塗装の採用
壁面線化の採用 | | | | | 開口部の日射遮蔽性の向上 | サッシの日射遮蔽性の向上 | 庇・ルーバー等の設置
緑のカーテンの設置 | | | | | | ガラスの日射遮蔽性の向上 | 日射調整フィルム等の設置
ガラスの交換 | | | | 通風性の向上 | 窓の通風性の向上 | | 通風・換気機能付き建具の採用 | | | | | 通風経路の確保 | | ランマ付建具の採用 | | | | その他室内環境の向上 | 仕上材による室内環境の向上 | | 木質系什上材の採用 | | | | 設備機器の節エネ・高効率化 | 高効率化 | | エレベータの高効率化
給水ポンプの高効率化
冷暖房機器の高効率化
給湯機器の高効率化(潜熱回収式ガス給湯器)
給湯機器の高効率化(とートポンプ式給湯器)
照明設備の高効率化
類気設備の高効率化 | | | | | 節湯 | | 節湯型水栓器具の採用 | | | | | その他 | | 保温型浴槽の採用 | | | | 新技術 | 分散エネルギー | | コージェネレーション設備の設置(共用部:全棟)
コージェネレーション設備の設置(戸別住戸設置)
家庭用燃料電池設備の設置(戸別住戸設置) | | | | | 再生可能エネルギー | | 太陽熱利用温水設備の設置(共用部設置)
太陽熱利用温水設備の設置(戸別住戸設置)
太陽光発電設備の設置(共用部設置)
太陽光発電設備の設置(共用部設置)
太陽光発電設備の設置(戸別住戸設置) | | | | | エネルギー管理 | | HEMS(Home Energy Management System)の採用
BEMS(Building and Energy Management System)の採用 | | | | | その他 | | カーシェアリングの採用 |